In vitro selection and characterization of human immunodeficiency virus type 1 variants with increased resistance to ABT-378, a novel protease inhibitor.
نویسندگان
چکیده
ABT-378, a new human immunodeficiency virus type 1 (HIV-1) protease inhibitor which is significantly more active than ritonavir in cell culture, is currently under investigation for the treatment of AIDS. Development of viral resistance to ABT-378 in vitro was studied by serial passage of HIV-1 (pNL4-3) in MT-4 cells. Selection of viral variants with increasing concentrations of ABT-378 revealed a sequential appearance of mutations in the protease gene: I84V-L10F-M46I-T91S-V32I-I47V. Further selection at a 3.0 microM inhibitor concentration resulted in an additional change at residue 47 (V47A), as well as reversion at residue 32 back to the wild-type sequence. The 50% effective concentration of ABT-378 against passaged virus containing these additional changes was 338-fold higher than that against wild-type virus. In addition to changes in the protease gene, sequence analysis of passaged virus revealed mutations in the p1/p6 (P1' residue Leu to Phe) and p7/p1 (P2 residue Ala to Val) gag proteolytic processing sites. The p1/p6 mutation appeared in several clones derived from early passages and was present in all clones obtained from passage P11 (0.42 microM ABT-378) onward. The p7/p1 mutation appeared very late during the selection process and was strongly associated with the emergence of the additional change at residue 47 (V47A) and the reversion at residue 32 back to the wild-type sequence. Furthermore, this p7/p1 mutation was present in all clones obtained from passage P17 (3.0 microM ABT-378) onward and always occurred in conjunction with the p1/p6 mutation. Full-length molecular clones containing protease mutations observed very late during the selection process were constructed and found to be viable only in the presence of both the p7/p1 and p1/p6 cleavage-site mutations. This suggests that mutation of these gag proteolytic cleavage sites is required for the growth of highly resistant HIV-1 selected by ABT-378 and supports recent work demonstrating that mutations in the p7/p1/p6 region play an important role in conferring resistance to protease inhibitors (L. Doyon et al., J. Virol. 70:3763-3769, 1996; Y. M. Zhang et al., J. Virol. 71:6662-6670, 1997).
منابع مشابه
Selection and analysis of human immunodeficiency virus type 1 variants with increased resistance to ABT-538, a novel protease inhibitor.
Inhibitors of the human immunodeficiency virus protease represent a promising new class of antiretroviral drugs for the treatment of AIDS. We now report the in vitro selection of viral variants with decreased sensitivity to a symmetry-based protease inhibitor, ABT-538, currently being tested in clinical trials. Molecular characterization of the variants shows that an isoleucine-to-valine substi...
متن کاملCharacterization of human immunodeficiency virus type 1 variants with increased resistance to a C2-symmetric protease inhibitor.
Inhibitors of the human immunodeficiency virus type 1 protease represent a promising class of antiviral drugs for the treatment of AIDS, and several are now in clinical trials. Here, we report the in vitro selection of viral variants with decreased sensitivity to a C2-symmetric protease inhibitor (A-77003). We show that a single amino acid substitution (Arg to Gln or Lys) at position 8 of the p...
متن کاملResistance mechanism of human immunodeficiency virus type-1 protease to inhibitors: A molecular dynamic approach
Human immunodeficiency virus type 1 (HIV-1) protease inhibitors comprise an important class of drugs used in HIV treatments. However, mutations of protease genes accelerated by low fidelity of reverse transcriptase yield drug resistant mutants of reduced affinities for the inhibitors. This problem is considered to be a serious barrier against HIV treatment for the foreseeable future. In this st...
متن کاملPotent inhibition of the cytochrome P-450 3A-mediated human liver microsomal metabolism of a novel HIV protease inhibitor by ritonavir: A positive drug-drug interaction.
ABT-378 is a potent in vitro inhibitor of the HIV protease and is currently being developed for coadministration with another HIV protease inhibitor, ritonavir, as an oral therapeutic treatment for HIV infection. In the present study, the effect of ritonavir, a potent inhibitor of cytochrome P-450 (CYP) 3A, on the in vitro metabolism of ABT-378 was examined. Furthermore, the effect of ABT-378-r...
متن کاملIn vitro metabolism of the HIV-1 protease inhibitor ABT-378: species comparison and metabolite identification.
HIV protease inhibitor ABT-378 (ABT-378) was metabolized very extensively and rapidly by liver microsomes from mouse, rat, dog, monkey, and humans. The rates of NADPH-dependent metabolism of ABT-378 ranged from 2.39 to 9.80 nmol.mg microsomal protein-1.min-1, with monkey liver microsomes exhibiting the highest rates of metabolism. ABT-378 was metabolized to 12 metabolites (M-1 to M-12), which w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of virology
دوره 72 9 شماره
صفحات -
تاریخ انتشار 1998